

MBH-003-001202

Seat No.

B. Sc. (Sem. II) (CBCS) Examination

March / April - 2018

Physics: Paper - 201

(Waves, Optics, Crystallography, Electronics & Modern Physics)
(Old Course)

Faculty Code: 003

Subject Code: 001202

Time: $2\frac{1}{2}$ Hours] [Total Marks: 70]

Instructions: (1) All questions are compulsory.

- (2) Figures on right side indicate marks.
- (3) Symbols have their usual meaning.
- 1 Answer all questions: (Each 1 mark)

20

- (1) Write an eqn. for wave in differential form.
- (2) Write a formula of Laplace for the velocity of sound in air.
- (3) State Bragg's law in mathematical form.
- (4) What is Compton Effect?
- (5) Who discovered X-rays?
- (6) Write Snell's law in mathematical form.
- (7) Soap bubble looks colored due to which optical phenomenon?
- (8) Splitting of white light into different colors is known as _____.
- (9) Write the value of min. energy required for a γ photon in pair production.
- (10) Half life of radioactive element depends on which factor?
- (11) Write an eqn. for average or mean life for any radioactive element.
- (12) Write an eqn. for plane parallel to X and Z axis, miller indices.

- (13) According to Bravis, how many space lattice is possible?
- (14) Identify/Name the space Lattice structure of Diamond.
- (15) Write the unit of ripple factor.
- (16) What is the r_{ms} value of o/p current in half wave rectifier?
- (17) In which rectifier is widely used in electrical circuit?
- (18) When light falls on the junction of the diode, current flows through it. What is it called?
- (19) How the photo diode is normally biased?
- (20) Write an eqn. for relation between I_{ceo} and I_{cbo} .
- 2 (A) Answer the following questions: (Any **Three**) 6
 - (1) What are waves?
 - (2) What are the laws of vibrating string?
 - (3) Write the properties of X-rays.
 - (4) Define angular dispersion.
 - (5) What is natural radioactivity?
 - (6) What is radioactive decay constant?
 - (B) Answer the following questions: (Any **Three**) 9
 - (1) Derive Newton's formula for velocity of sound in air and apply Laplace's correction to it.
 - (2) An X-ray tube works on 50 kV, what will be min. wavelength of X-rays emitted by it?
 - (3) Explain Laue's spot, describe its physical significance.
 - (4) Discuss in brief the Fermat's principle.
 - (5) What is meant by interference of light? State its fundamental conditions.
 - (6) What are radioactive radiations? Mention its properties.
 - (C) Answer the following questions: (Any Two) 10
 - (1) Describe Melde's experiment and show that frequency in transverse mode is twice as that in longitudinal mode.
 - (2) Explain Bragg's spectrometer, its uses, and explain its use in determining the wavelength of X-rays.

- (3) Discuss the law of reflection and refraction as special cases of Fermets's principle.
- (4) Write the properties of γ rays.
- (5) Describe Compton effect and pair production phenomenon.
- 3 (A) Answer the following questions: (Any Three)
 - (1) What is crystal lattice?
 - (2) Define unit cell and primitive cell.
 - (3) Explain working of π -filter.
 - (4) Explain typical circuit of an optoisolator.
 - (5) What is counter circuit?
 - (6) Find the value of, if $\alpha = 0.98$.
 - (B) Answer the following questions: (Any **Three**) 9
 - (1) Explain with schematic diagram : Diamond structure
 - (2) How miller indices are decided?
 - (3) Explain full wave bridge rectifier circuit diagram and construction.
 - (4) Gvie a complete analysis of Half Wave rectifier.
 - (5) Explain CE connections/configurations.
 - (6) Describe about alarm circuit, in photodiode.
 - (C) Answer the following questions: (Any Two) 10
 - (1) What is transistor? Explain briefly its classifications, construction and biasing.
 - (2) Explain the terms : Dark current and Saturation current for a photodiode.
 - (3) Summarize seven crystal divided into fourteen type of Bravais Lattice.
 - (4) Give a complete mathematical analysis of full wave rectifier.
 - (5) Describe in details of the i/p and o/p characteristics of CB configurations.

6